

# Team 521: Housing/Chassis Design for

# **Engine Electrical Accessories**

Team Members: Marcus Cowan; Mosad Elsankary; Matthew Marshall; Austin Watson

FAMU-FSU College of Engineering 2525 Pottsdamer St. Tallahassee, FL. 32310



## Abstract

The abstract is a concise statement of the significant contents of your project. The abstract should be one paragraph of between 150 and 500 words. The abstract is not indents.

*Keywords*: list 3 to 5 keywords that describe your project.



### Disclaimer

Your sponsor may require a disclaimer on the report. Especially if it is a government sponsored project or confidential project. If a disclaimer is not required delete this section.



#### Acknowledgement

These remarks thanks those that helped you complete your senior design project. Especially those who have sponsored the project, provided mentorship advice, and materials. 4

- Paragraph 1 thank sponsor!
- Paragraph 2 thank advisors.
- Paragraph 3 thank those that provided you materials and resources.
- Paragraph 4 thank anyone else who helped you.



| Table of Contents              |
|--------------------------------|
| Abstract 11                    |
| Disclaimeriii                  |
| Acknowledgement iv             |
| List of Tables                 |
| List of Figures viii           |
| Notationix                     |
| Chapter One: EML 4551C 1       |
| 1.1 Project Scope1             |
| 1.2 Customer Needs 1           |
| 1.3 Functional Decomposition 1 |
| 1.4 Target Summary 4           |
| 1.5 Concept Generation 4       |
| Concept 1 4                    |
| Concept 2                      |
| Concept 3 4                    |
| Concept 4                      |
| Concept n+14                   |
| 1.6 Concept Selection          |
| Team 521 v                     |



| 1.8 Spring Project Plan                                                         |  |  |  |  |
|---------------------------------------------------------------------------------|--|--|--|--|
| Chapter Two: EML 4552C5                                                         |  |  |  |  |
| 2.1 Spring Plan5                                                                |  |  |  |  |
| Project Plan5                                                                   |  |  |  |  |
| Build Plan5                                                                     |  |  |  |  |
| Appendices                                                                      |  |  |  |  |
| Appendix A: Code of ConductError! Bookmark not defined.                         |  |  |  |  |
| Appendix B: Functional Decomposition                                            |  |  |  |  |
| Appendix C: Target CatalogError! Bookmark not defined.                          |  |  |  |  |
| Appendix A: APA Headings (delete)Error! Bookmark not defined.                   |  |  |  |  |
| Heading 1 is Centered, Boldface, Uppercase and Lowercase HeadingError! Bookmark |  |  |  |  |
| not defined.                                                                    |  |  |  |  |

Heading 2 is Flush Left, Boldface, Uppercase and Lowercase Heading...... Error! Bookmark not defined.

Heading 3 is indented, boldface lowercase paragraph heading ending with a period.

| ••• |                                               | Error! Bookmark not defined. |
|-----|-----------------------------------------------|------------------------------|
|     | Appendix B Figures and Tables (delete)        | Error! Bookmark not defined. |
|     | Flush Left, Boldface, Uppercase and Lowercase | Error! Bookmark not defined. |
|     | References                                    | Error! Bookmark not defined. |
|     | Team 521                                      | vi                           |





# List of Tables

 Table 1 The Word Table and the Table Number are Normal Font and Flush Left. The

Caption is Flush Left, Italicized, Uppercase and Lowercase .......Error! Bookmark not defined.



# List of Figures

Figure 1. Flush left, normal font settings, sentence case, and ends with a period. .... Error! Bookmark not defined.



# Notation

| A17     | Steering Column Angle                         |  |
|---------|-----------------------------------------------|--|
| A27     | Pan Angle                                     |  |
| A40     | Back Angle                                    |  |
| A42     | Hip Angle                                     |  |
| AAA     | American Automobile Association               |  |
| AARP    | American Association of Retired Persons       |  |
| AHP     | Accelerator Heel Point                        |  |
| ANOVA   | Analysis of Variance                          |  |
| AOTA    | American Occupational Therapy Association     |  |
| ASA     | American Society on Aging                     |  |
| BA      | Back Angle                                    |  |
| BOF     | Ball of Foot                                  |  |
| BOFRP   | Ball of Foot Reference Point                  |  |
| CAD     | Computer Aided Design                         |  |
| CDC     | Centers for Disease Control and Prevention    |  |
|         | Clemson University - International Center for |  |
| CU-ICAR | Automotive Research                           |  |
| DDI     | Driver Death per Involvement Ratio            |  |
| DIT     | Driver Involvement per Vehicle Mile Traveled  |  |



# Difference between the calculated and measured

| Difference | BOFRP to H-point                       |
|------------|----------------------------------------|
| DRR        | Death Rate Ratio                       |
| DRS        | Driving Rehabilitation Specialist      |
| EMM        | Estimated Marginal Means               |
| FARS       | Fatality Analysis Reporting System     |
| FMVSS      | Federal Motor Vehicle Safety Standard  |
| GES        | General Estimates System               |
| GHS        | Greenville Health System               |
| H13        | Steering Wheel Thigh Clearance         |
| H17        | Wheel Center to Heel Pont              |
| H30        | H-point to accelerator heel point      |
| HPD        | H-point Design Tool                    |
| HPM        | H-point Machine                        |
| HPM-II     | H-point Machine II                     |
| HT         | H-point Travel                         |
| HX         | H-point to Accelerator Heel Point      |
| HZ         | H-point to Accelerator Heel Point      |
| IIHS       | Insurance Institute for Highway Safety |
| L6         | BFRP to Steering Wheel Center          |





#### **Chapter One: EML 4551C**

**1.1 Project Scope** 

**1.2 Customer Needs** 

#### **1.3 Functional Decomposition**

After studying the project scope and customer needs, the housing assembly was further decomposed into smaller, more precise functions and sub functions. Analyzing the system on a smaller scale and developing an understanding of what each function needs to accomplish; helps to visualize possible design solutions and to see how improvements can be made to the overall system.

The three main functions of the design that are crucial to its success are listed below:

- Support
- Protection
- Minimize Manufacturing

The sub functions will then be followed by the main functions. Each sub function represents an aspect of the main function that needs to be accomplished for the system to be successful. The support system for the housing is an important part of the design because of its integral role of turbine operation. In order to improve the support of the housing, the ignition system components need to be secure. If the position of the housing is altered, the components inside

Team 521

1



could be damaged or misaligned. The housing needs to be durable and strong; in the event that debris hits the housing while the turbine is on and operating, it is important that the housing is durable enough to withstand the blow and continue functioning as intended. Because of all the moving parts of a turbine, the housing will experience vibration that could possibly damage the components inside. The housing needs to be stable and mounted well enough to reduce the effects of vibration. Protection is another important role of the housing assembly. The housing will experience random lighting strikes while the plane is in the air. There will be thermal challenges experience because of the mounting position of the housing being directly on the turbine. Extreme heat from the turbine and/or extreme cold from the environment around the turbine are all possible experiences. Again, the design needs to be durable in order to maintain protection of the components inside of the housing assembly. Lastly, manufacturing time needs to be minimized. To do that, the process of assembling the housing needs to be altered to make it easier to assemble. The disassembly process needs to be more efficient. It is important that each ignition component isn't damaged when trying to disassemble the housing for maintenance purposes. Also, the cost needs to be maintained at the current labor rate in order to prove that the job can be done without adding more work to the overall manufacturing process. The matrix that includes the main functions and sub functions is shown below.



|                                                  | MAIN Function |            |                       |  |
|--------------------------------------------------|---------------|------------|-----------------------|--|
| Sub-Functions                                    | Support       | Protection | Enhance Manufacturing |  |
| Secure main ignition system components           | ×             |            |                       |  |
| Determine more<br>efficient assembly<br>method   |               |            | ×                     |  |
| Shield against lightning strikes                 |               | ×          |                       |  |
| Maintain stability                               | ×             |            |                       |  |
| Decrease weight                                  |               |            | ×                     |  |
| Handle large temperature ranges                  |               | ×          |                       |  |
| Allow for easy<br>disassembly and<br>maintenance |               |            | ×                     |  |
| Provide durability                               | ×             | ×          |                       |  |
| Reduce cost                                      |               |            | ×                     |  |



### Table 1: Functional Decomposition Matrix

# **1.4 Target Summary**

# **1.5 Concept Generation**

Concept 1.

Concept 2.

Concept 3.

Concept 4.

Concept n+1.

**1.6 Concept Selection** 

**1.8 Spring Project Plan** 



# Chapter Two: EML 4552C

2.1 Spring Plan

Project Plan.

Build Plan.



Appendices







# **Appendix B: Functional Decomposition**

Figure 1: Functional Decomposition

